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Summary. We investigated the time to fixation or loss and the probability of fixation of a gene under a discrete

diploid model of variable fitness.

Data were presented on the effects of the level of dominance, relative magnitude of the variance in fitness of the
three genotypes, and selection intensity on the probability of fixation and time to absorption of a gene. The relationship
of our model in the haploid case to that of Kimura and Ohta was discussed.

1. Introduction

The probability of fixation of a gene and its time
to fixation or loss in a population of small size have
drawn considerable attention from population gene-
ticists because of the significance of those factors in
natural and artificial selection. Kimura (1962) was the
first to formulate a stochastic model that took into
consideration random sampling and random fluctua-
tion in the selection intensity of a gene. For his model
Kimura derived a general expression for the ultimate
probability of fixation of a mutant gene. The formula
was applied for limited cases by’ Kimura (1962).
While our work was in preparation, Ohta (1972)
applied Kimura’s formula for cases of genic selection
where the selection intensity of a mutant fluctuates
at random from generation to generation. No work
has been done on variable selection in diploids; hence,
in this paper, we shall examine the effect of fluctu-
ations in fitness on the probability of fixation and the
time to fixation or loss of a gene under a more
general case of zygotic selection.

2. Theory and Methods

Consider a single locus with two alleles (4, a) in a po-
pulation of N diploid individuals that mate entirely at
random. Assume that the population size is constant
and that, aside from selection, random fluctuations in
the selection intensity and random drift are the only
pressures present in the population causing gene frequency
to change.

Let X; denote the frequency of allele 4 in an infinite
(or potentially infinite) population of newly formed
zygotes. Let the fitness of the three genotypes 44, Aa
and aa be W,, W, and W, respectively. Without loss of
generality, we take W,, W,, and Wytobe 1 + S5, 1 4 S,
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and 1 + S;. Si (! =1, 2, 3) is a random variable with
mean us; and variance vs;, The frequency of 4 in the
infinite population after selection and before sampling of

gametes is
X, — Xi(t+s)+ XY (148

PUXI( Fs) F2X Y (1 F5) H Y3 (1 s)
where Y, = 1 — X,. After selection has taken place the
remaining zygotes reproduce at random and establish
a proportion, x;, of A alleles in the next generation. In
each generation the quantity 2 N x; is an observed value
of a random variable Z with binomial probability function

(2.1)

P[Z:z]:(zzN)ng—xz)ZN—z, z2=20,1,...,2N.

(2.2)

In our model the change in gene frequency from gene-
ration to generation is, strictly speaking, Markovian.
We will, however, use the diffusion approximation to
obtain a solution. A diffusion solution, found to be very
good even for a population size as small as 10 (Carr and
Nassar, 1970a), has the advantage in this case of sim-
plicity over a Markov chain solution.

Let

U(x) = the ultimate probability that a gene whose
initial frequency is ¥ becomes fixed.

E(x¥) = themean time until fixation or loss (absorption)
of a gene whose initial frequency is x.

M(x) = mean change in gene frequency per generation.

V(x) = variance of change in gene frequency per
generation

then u(¥) and E(#) satisfy the ordinary differential
equations

V(%) @p(x)

= g b @3)
and BE IE
e Rl RS

with boundary conditions u(0) = 0, (1) = 1 and E(0) =
= E(1) = 0, respectively (Kimura 1954, Feller 1954).
Schematically, the change in gene frequency from any
generation to the next may be represented in our model
by

x, 5 x%X,
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where s denotes the change from X, to the intermediate
frequency X, due to selection and b denotes the change
from X, to the next generation frequency due to binomial
sampling.

Let

At =X, — X,, 4y, =X, — X, and Ay =X, — X,.
The mean change in gene frequency can now be repre-
sented by

M(xy) = E(At) = E (41, + )

= Es Ep (A1 + dyls)

= Eg(dyy) = Es [(X,) — X4]

—E [Xl (1—X) (55,45, (1 —2X5)— 51 —Xl)]

M5 XT+2S5,X 1 —X)+ 51— X2
(2.5)

where Es denotes the expectation with respect to the
random variables S,, S,, and S; and E; denotes the
expectation with respect to the binomial probability
function (2.2).

An analogous expression for V(x) can be found by
assuming that 4,, and 4,, are independent

X(1-X) 1—2X

= Var (4,5) + SN + 2N Ey(4y5) —
_ Es(43)
2N
X, 1 —-X 1 —2X
= Var (4y) + = (2 N 1‘) “+ 2NJES(A12) -

— S5 (Bl ) + Var (4)]. (26)

Expressions (2.5) and (2.6) for the mean and variance
of the change in gene frequency per generation are
difficult to evaluate explicitly because we must obtain
the expectation and variance of a ratio involving the
random variables S;, S, and S;. We approximated
Ey(4y;) and Var (4y,) in (2.5) and (2.6) by a Taylor series
expansion to three and two terms, respectively. As thus
we obtained

Es(Ay) = E(H(sy, s, 55))
= Hps,, usq Msy)

Ultimate probability of fixation

1 3 0H S 9H
Vix) = Var (1) + Var (dy) + > Zi’ -—as% Vs + '21 35 057 a5; Covs;ss (2.7)
i= i,§=
= Var (4y) + Es [(Xy + 4p) (1 — Xy — Ay)[2 N] i<j
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Fig. 1a,b, ¢, d, e.

Ultimate Probability of Fixation of a Gene as a Function of the Initial Gene Frequency. A Number for

each Graph is Used to Designate the Value of the Variance of Fitness for each Genotype
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and
3 (9H\® 3, 0H 9H
Var (Alz) = 1-:1/ (83,‘) Vs; + 217Z=’1 5; aS, COUs, S (28)
i<
where the first and second partial derivatives are eva-
luated at (us,, ps,, ps,). With (2.7) and (2.8) as approxi-
mate expressions for M(x) and V(x), the solutions to
(2.3) and (2.4) were obtained numerically using a one-
dimensional difference scheme. The derivatives were
approximated using the centered-difference forms and
the resulting tri-diagonal system of equations was solved
at 100 points (for N = 500) in the interval [0, 1] using
the Gaussian elimination method (Carnahan, Luther
and Wilkes, 1969). For accuracy of the numerical
solution we compared it with the exact solution using
a finite Markov chain when selection was constant (Carr
and Nassar, 1970a, b} and found it to be exact. The
difference in values between the two solutions for the
expected time to fixation or loss was 0.5 or less. For the
probability of fixation, the two solutions were the same
for at least two significant places. We will later show
that the approximation employed in evaluation M (%)
and V(x) had no effect at least on the qualitative nature
of the results. We expect also that if the expected values
and variance of S;, S, and S; are small, as in this study,
the effect on the quantitative nature of the results will be
negligible.

Results in this paper will be based on the assumption
that there is no covariance in fitness among the three
genotypes. In other words Couvs;s; = O in expressions
(2.7) and (2.8). We will, however, examine later the
general effect a covariance in fitness might have on these
results.

3. Results

If we consider fig. 1a, we see that if a gene’s se-
lective value fluctuates from generation to generation
but is zero on the average (V= 0, uy; = 0), the
gene will be selected for or against, depending on
its initial frequency. For mutant and low frequency
genes the result is that if the fitness of all three
genotypes varies (V,, 5= 0), the ultimate probability
of fixation is larger than the initial gene frequency,
implying that the neutral gene becomes advantage-
ous. For high frequency genes the reverse is true and
the gene becomes disadvantageous as a result of
fluctuations in the genotypic fitnesses. When V=V,
a gene at initial gene frequency 1/2 will have an
ultimate probability of fixation of 1/2; hence, it is
truly a neutral gene. As V, is increased relative
to V,, and V,, the point of neutrality (point of
intersection with the diagonal line) slides back toward
the origin. If the homozygote of interest is the only
one with variable fitness (Vi # 0, V,,= V;, = 0),
then the gene with the favorable fitness becomes
disadvantageous at all initial frequencies (graphs 1,
2; fig. 1a). This implies that if a selectively neutral
mutant gene (u;; = 0) has a variable fitness while
its allele has not, the mutant gene becomes in effect
disadvantageous and its fixation probability becomes
less than its initial gene frequency. From fig. 1a it
is also clear that relative to the case V,, = V,, = V,,
increasing the variance in fitness for the heterozygote
over the two homozygotes tended to increase the
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probability of fixation of low frequency genes and
decrease it for high frequency genes. Decreasing the
variance of the heterozygotes relative to the two
homozygotes tended to decrease the probability of
fixation of low frequency genes and increase it for
high frequency genes.

With selection (us; 7 0) the results (fig. 1b, c, d, €)
show that (aside from genes at very low frequency)
regardless of the level of dominance the effect of a
variance in genotypic fitness was to decrease the
ultimate probability of fixation of a gene relative
to the case of no variance (V;, = 0, 0, 0). With in-
creased variance (V: (.04, .04, .04) or (.2, .2, .2)),
the probability of fixation decreased further. De-
creasing the variance of the heterozygote fitness
relative to that of the two homozygotes (V,, = .2,
.01, .2) tended to equalize the amount of reduction
in the fixation probabilites over a wide range of
initial gene frequencies.

The magnitude of the effect of a variance in fit-
ness on the fixation probabilities varies with the level
of dominance, as seen by comparing graphs of the
same V; valuesin b, ¢, d and e of fig. 1. A value of

Table 1. Ultimate Probability of Fixation of a Gene for
Diffevent Selection Models with Varying Genotypic Fitness

Initial gene frequency: .01 .02 .03 .04

Hsy Hs, Hsy Vsl Vs, Vs,

01 .01 0 0 0 0 .69 .309 .424 .518
2 .2 .2 145 .207 .247 .276
2 .01 .2 .396 .486 .527 .549
.04 .04 .04 153 .242 .303 .350
.04 0 0 .105 .193 .264 .323
01 005 0 O O O .094 .80 .258 .328
2 .2 2 137 198 .237 .265
2 .01 .2 .385 .476 .518 .542
.04 .04 .04 .124 .200 .255 .298
.04 0 O .037 .071 .102 .129
.01 0 0O 0 0 0 .035 .071 .106 .141
2 .2 .2 129 .188 .226 .254
2 .01 .2 .373 .466 .509 .534
.04 .04 .04 .098 .162 .210 .248
.04 0 0 .009 .019 .028 .037
01 .03 0O 0 0 O .437 .680 .816 .893
2 .2 .2 A77 247 .280 .319
2 .01 .2 .437 .520 .555 .574
.04 .04 .04 .285 .416 .493 .545
.04 0 0 .435 .676 .811 .888

(.04, 0, 0), as an example, caused the largest re-
duction in the fixation probability for the recessive
and additive cases, and the least reduction for the
overdominant case. Similarly fluctuations in fitness
(.01, .01, .01; .04, .04, .04) that are not of relatively
large magnitudes had little effect on reducing prob-
abilities of fixation of a strongly overdominant gene
(fig. 1¢e).

At low initial frequencies, as in the case of mutant
genes, Table 1 shows that for overdominance there
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was no increase in the fixation probability from
(Vs =0, 0, 0). For full dominance (us; = .01, .01, 0)
there was an increase only for (V,, = .2, .01, .2).
For additive and recessive cases, there was an in-
crease for (V= .2, .2, .2), (V,=.2, .01, .2) and
(Vs = .04, .04, .04). Hence for advantageous mutant
genes, fluctuations in fitness could increase the ulti-
mate probability of fixation depending on the level
of dominance.

Table 2. Ultimate Probability of Fixation of a Deletevious
Gene for an Additive and a Recessive Selection Model
with Varying Genotypic Fitness

Initial gene frequency: .01 .02 .03 .04 .05
Hs, Hss HUss Vs, Vs, Vs
—.01 0 0 0 O 0 .000 .000.000.000.000
.02 .02 .02 .009 .016.022.027.031
.04 .04 .04 .027 .045.059.070.079
-.04 .01 .04 .034 .055.069 .080 .088
.04 0 0 .000 .000 .000 .000 .000
.02 0 0 .000 .000 .000.000 .000
—-.01 —.0050 0 O 0 .000 .000.000 .000 .000
.02 .02 .02 .006 .012.017.021 .025
.04 .04. .04 .022 .037 .049.059 .068
.04 .01 .04 .029 .047.060.071.079
.04 0 0 .000 .000.000.000 .000
02 0 0 .000 .000 .000 .000 .000

Table 2 shows that for a midly deleterious gene
with or without a deleterious heterozygote effect
(2 —.01, 0, 0 and —.01, —.005, 0) a variable
genotypic fitness (V; = .02, .02, .02) had made the
gene less deleterious. Increasing the variances fur-
ther (V5 = .04, .04, .04) resulted in making a dele-
terious gene beneficial, especially if the heterozygote
is more stable than either homozygotes in fitness
(Vs = .04, .01, .04). If only the deleterious mutant

homozygote is variable in fitness, there is very little
effect on changing the fitness of a gene.

In figs. 2a, b, ¢ and d, the ratio [R(7)] of the time
to fixation or loss for selection and/or wvariable
genotypic fitness to that with no selection and con-
stant genotypic fitness is plotted against the initial
gene frequency, 7. If R(i) was less than 1, there was
acceleration in the time to fixation or loss compared
to that of drift alone. A ratio larger than 1 implies
retardation in the time to fixation or loss compared
with drift. Fig. 1a shows that for a neutral gene
(2 0, 0, 0) a fluctuation in genotypic fitness accele-
rated the time to fixation or loss over a large range
of initial gene frequencies. For mutant genes, a
fluctuation in genotypic fitness can prolong the time
to fixation or loss of a gene (graphs 3, 5, 6, fig. 1a),
provided the heterozygote is more stable than both
homozygotes [(.02, .01, .02), (.2, .01, .2)]. For the
case of selection (fig. 2b, ¢, d), one sees that, com-
pared with a constant fitness (V;, = 0, 0, 0), two cases
of variable fitness increased the time to fixation or
loss. In those cases the heterozygote was more
stable than either homozygote (V; = .2, .01, .2) and
the homozygote for the gene in question was the
only one with variable fitness. For overdominance
(Table 3), any variable fitness seemed to reduce
substantially the time to fixation or loss as compared
to constant fitness (Vs = 0, 0, 0).

4. Discussion

Our analysis of the time to fixation or loss and
probability of fixation of a gene included all initial
gene frequencies at an interval of 0.1 between 0 and 1.
Population geneticists and evolutionists are interested
in mutant genes that are usually at low initial
frequency in the population. In addition to mutant
genes, beneficial genes that are not of low frequency,

Table 3. Ratio of the Time to Fixation or Loss of an Overdominant Gene (us, = .01, us, = .03,
s, = 0) with Varying Genotypic Fitness to the Time to Fixation or Loss under Constant Genotypic
Fitness and no Selection (Drift)

(Vsy Vsp Vs,) .01, .01, .01 .04, .04, .04 .2, .2, .2 .2, .01, .2 0,0,0 .04,0,0
Initial

gene frequency

01 34.25 5.32 .82 20.29 669.58 140.42
.02 28.74 4.26 .62 13.37 576.62 120.86
.03 24.66 3.61 .51 10.24 497.21 104.18
.04 21.62 3.16 44 8.43 433.55 90.82
.05 19.28 2.83 .40 7.24 383.18 80.26
.10 12.96 1.97 .28 4.55 245.94 51.50
.20 8.58 1.38 .20 2.99 159.69 33.43
.30 7.03 1.15 A7 2.45 130.56 27.31
.40 6.36 1.05 16 2.23 118.39 24.75
.50 6.15 1.01 16 2.16 114.90 23.99
.60 6.30 1.02 16 2.23 118.30 24.66
.70 6.87 1.10 A7 2.45§ 130.29 27.08
.80 8.18 1.28 .20 2.98 158.63 32.81
.90 11.55 1.75 .27 4.51 235.62 48.92
.95 15.82 2.38 .38 711 332.06 73.87
.99 23.56 4.05 .76 19.26 459.41 147.46

Theovet. Appl. Genetics, Vol. 44, No. 6
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but rather in the intermediate
range between 0 and 1 are of
interest to quantitative gene-
ticists and animal and plant
breeders. Our results show
that for such genes any sort
of variance in fitness can be
expected to reduce the net
fitness of a gene. With regard
to time to fixation or loss,
which has a direct bearing on
the maintenance of genetic
variability in a line, our ana-
lysis indicates that if the fit-
ness of the two homozygotes
varies more than that of the
heterozygote, time to fixation
or loss for a gene (excluding
overdominance) can be expec-
ted to be prolonged as com-
pared with the case where
no variance in fitness exists.

Also time to fixation or loss
can be prolonged if the vari-
ance in fitness is only for the
homozygote genotype of the
gene in question. We believe
that this latter type of situa-
tion is not likely to occur for
intermediate and high fre-
quency genes. Of biological
significance, however, is the
case where both homozygotes
are variable in fitness and the
heterozygote less variable
than either homozygote.
Other conditions of variable
fitness for all three genotypes
can only substantially accele-
rate a gene’s time to fixation
or loss.

It is interesting to note
that as dominance increases
to the point of strong over-
dominance, a variance in fit-
ness can only lead to a sub-
stantial acceleration (fromthe
case of constant fitness) in the
time to fixation or loss.

With regard to neutral
genes (s, = 0), should a situa-
tion arise where the twohomo-
zygotes have about equal
variance in fitness, genes with
initial frequency below 0.5
would become advantageous
and those above 0.5 disad-
vantageous. Under a variable
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fitness discrete model there is truly then no neutral
genes in fitness except at one point in the initial gene
frequency. That point of neutrality is determined
by the relative magnitude of the variance in fitness
of the two homozygotes (figure 1a).

For low frequency genes, such as mutants, we have
shown that a selectively neutral gene (uy = 0) can
become advantageous if both homozygotes have
variable fitness and disadvantageous if only the
mutant homozygote has a variable fitness. A slightly
deleterious mutant might become near neutral or
advantageous in fitness (depending on the magnitude
of the variance in fitness to the mean fitness of a
genotype) if both homozygotes are variable in fitness;
but would remain deleterious if only the mutant
homozygote is variable in fitness. A variance in
fitness will not always shorten the average time of
fixation or loss of a gene. If both homozygotes are
variable in fitness and the heterozygote is less va-
riable than either homozygote, the time to fixation
or loss is prolonged considerably.

If we assume that the fitness of a mutant homo-
zygote genotype fluctuates but not the fitnesses of
the wild type homozygote and heterozygote, then we
see that a beneficial mutant can be reduced in fitness
to the point of neutrality or to being deleterious if
there is weak to no dominance (V,, = .04, 0, O:
Table 1). On the other hand a deleterious gene
(Table 2) might become neutral or beneficial. In
other words, because of the asymmetry in the se-
lection effect, the limiting fitness, as the variance in
fitness increases relative to mean fitness, is not neu-
trality. Neutrality in fitness is only an outcome in a
continuous array of possible fitness values that can
arise.

In this light it is proper to ask whether a gene can
be selectively neutral. For our model the answer
is in the negative. A gene that is neutral in its
average fitness will become deleterious or advan-
tageous, depending on the mode of the variance in
fitness. Slightly deleterious or advantageous genes
on the other hand, might become neutral, but the
likelihood is very small because neutrality is not a
limiting case, and such genes might go beyond neu-
trality into the deleterious or advantageous range
of fitness, depending on the magnitude of the variance
in fitness to mean fitness and on the dominance level
as shown by these results.

In view of the current “non-Darwinian” theory on
molecular evolution it is relevant that mutant genes
that are neutral in mean fitness will become ad-
vantageous or deleterious in effect if fitness is a
random variable. The theory postulates that most
amino acid substitutions have occurred as a result
of random fixation caused by drift of selectively
neutral mutations. The theoretical arguments in
support of this postulate is based on constant fitness.
For natural populations one can argue that genes

that are neutral on the average will not behave as
neutral genes under variable fitness. If one assumes
that only the fitness of the mutant is variable, one
arrives at the conclusion that most mutants are de-
leterious. This conclusion agrees with the current
knowledge of mutants.

We might ask what effect does our approximations
have on the quality of our results? We have approx-
imated E(4,,) and Var{d,) by a Taylor series
expansion to three and two terms, respectively, thus
ignoring terms of the order of (s; — uy)? and higher.
For the values of s; and V; used in this study, we
think that the approximation cannot be so much in
error as to effect the quantitative nature of our
results. We have utilized two approaches to show
that our results are at least qualitatively correct. In
the first approach we simulated the model for the
case of ug, =0 with V;, =1.0. We assumed that
each s; has a normal distribution with mean g and
variance V. The simulation, based on 300 repli-
cations, produced these results:

01 10 5 9 .99
105 .305 .53 .69 .88

The results agree with those obtained from the dif-
fusion equation.

The second approach is exact and entails using the
Jensen’s inequality to predict the outcome of the
solution of the diffusion equation for the ultimate
probability of fixation. Jensen’s inequality states
that if a function, H(s,, s, S3) in our case, is concave
then

initial gene frequency:
probability of fixation:

ES[H(SI’ Sa, 83)] < H(,usl: Hsys ,us,)
and if convex
ES[H(SI »S2, 33)] > H(,usl» sy ,us,) .
In words, the expectation of a concave or convex

function is less or greater than the function of the
expectation. H(s,, s,, S3) is concave if and only if

SAS’ < 0 for every S = (sy, 8p, §3) vector

and convex if

SAS" > 0.
Here

02H 02H 0*H

052 s, 0s, sy 05,
u_ | o #H om

T | 85,05, 9s3 Os,0s,

0*H  o*H o0*H

ds, Os; 0s, 0s; 02

is the matrix of second partial derivatives of the
function with regard to s, s, and s;.
We shall sight only two cases to demonstrate the
point
1. ps, = fhs, = phs, =0 and V,#0, Vi,=V,=0.
2. ps, 7 0, ps, = s, = 0 and
V70, Vo, =V, =0.

Theovet. Appl. Genetics, Vol. 44, No. 6
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For the first case of neutral alleles, it can be shown
that
SAS' = —2si1x*(1 —x) <0,
hence,
ES[H(SI’ Sa» 33)] < H(O: 0, 0) =0.

This predicts that the ultimate probability of fixation
of a neutral gene is always less than its initial gene
frequency, because selection on the average is against
the gene. This prediction is born out by graphs 1
and 2 in fig. 1a. For the second case, SAS’ =
= — 25} x* (1 — x) also. This implies that E [H(s,, S,
sg)] < H(us, 0, 0). Graph 1 of fig. 1d shows that
the probability of fixation for us, = .01, ys, = ps, = 0
and for Vy, = .04, V,, = V,, = 0 is in fact less than
that of the same selection model with no variance
in fitness (Vs = 0).

All along, the results of the diffusion equation agree
with the prediction whenever the function can be
shown to be concave or convex. For some cases the
function is neither concave nor convex (all those cases
with V£ 0, i =1, 2, 3). Then, our results reflect
this property (graphs 3, 4, 5, 6, 7 in fig. 1a).

Results of this study were for the case where there
was zero correlation between the fitnesses of any
two genotypes. We have results (unpublished) where
the Covgy, in expressions (2.7) and (2.8) is such that
the correlation between s; and sj(7;;) ranges from
—1 to 1. Those results indicate, as expected, that
a positive correlation reduces the effect of a variance
in fitness on the time to absorption and the prob-
ability of fixation of a gene. A negative correlation,
on the other hand, increases it. In all cases, the

correlation has to be relatively large (r;; > 1/2 or
< 1/2) before its impact can become significant.

Haploid

It is of interest to investigate the properties of our
model for the haploid situation. In this case we let
the absolute fitness of the two gametes or types
(Ay, Ag) in the population be W; =1 -+ s and
Wy =1 + s, where s; (7 = 1, 2) is a random variable
with mean g, and variance V. Our analysis of this
case leads to results that are qualitatively similar to
the diploid case. Table 4 shows that the effect of a
variable fitness for both types in the population is to
cause a gene of neutral fitness (u; = 0) to become
advantageous or disadvantageous, depending on its
initial gene frequency. If, however, one type is
variable in fitness (Vs # 0, V, = 0), it will become
disadvantageous for all initial gene frequencies (these
results are comparable with those of fig. 1a). For
a beneficial gene (Table 4) the results are similar to
the diploid results (fig. 1b, ¢, d and e) in that a
variance in fitness reduces the ultimate probability
of fixation, and as the variance increases relative to
the mean, the ultimate probability of fixation, for
genes of high initial gene frequency, becomes less
than that for a neutral gene under constant fitness.
As Table 4 shows, variable fitness decreases sub-
stantially the expected time to fixation or loss.

We can use the Jensen’s inequality to check on the
nature of our results. In the case of us, = 0, u;, = 0,
Vs, # 0, V,, = 0, the rate of change of gene frequency

Table 4. Ultimate Probability of Fixation under Varying Fitness and the Ratio [R(i)] of the Time of Fixation or Loss
with Varying Fitness and Selection fo that under Constant Fitness and no Selection in a Haploid Population of Size 500

Msys s, 0, 0 0,0 0,0 .01, 0 .01, 0 .01, 0 0,0 0,0 .01, 0 .01, 0 .01, 0

Vs, Vs, 1, 1 1,1 1,0 0,0 1, 1 1,0 A, 1 1,0 0,0 A, .1 4,0

Initial gene .

frequency R()
.01 071 124 .000 .094 .105 .000 .632 .294 1.444 701 .343
.05 194 .252 .001 301 271 .004 375 .198 1.315 .403 .235
10 .267 314 .002 .629 .361 .008 .279 161 1.125 .204 192
15 314 353 .004 774 417 011 .233 144 .963 243 472
.20 .351 .382 006 .862 458 015 .207 134 .832 213 160
.25 .381 407 .008 916 492 .020 190 129 .729 194 154
.30 .408 .428 .010 .949 .520 .024 179 126 .647 181 151
.35 433 447 .012 .969 .546 .029 171 126 .582 172 150
.40 456 465 .015 .081 .569 .035 .166 427 531 166 151
45 478 483 .019 .988 .592 041 163 . 129 489 163 153
.50 .500 .500 .023 .993 613 .048 162 133 457 161 158
.55 .521 .517 .028 .995 .634 .056 163 139 430 .161 164
.60 .543 .534 .034 .997 .654 .065 .166 147 410 162 173
.65 .566 .552 .041 .998 .676 077 A71 .158 .394 .166 .185
.70 .501 .571 .051 .999 .691 091 179 173 .383 173 201
.75 .618 .592 .064 .999 721 110 .190 .193 .376 .182 224
.80 .648 617 .084 .999 747 136 .207 223 .374 197 256
.85 .685 .646 114 .999 .778 A75 .233 270 .379 .220 .306
.90 .733 .685 .168 .999 816 .240 279 .354 .392 .259 .394
.95 .805 747 .297 1.000 .870 .379 375 .544 426 .343 .585%

0.99 .928 .875 .685 1.000 .955 741 .632 1.072 .505% .561 1.075
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per generation is

514 (1 — )
His) = s

this function is concave since

ey — =2 <

hence,
Esl[H(Sl):l < H(,usl) =0

this implies that selection, on the average, is against
the A, allele and the ultimate probability of fixation
ought to be less than its initial gene frequency.
Results of Table 4 for y,, = u,, =0, Vs, % 0, V;, = 0
agree with the prediction.

Our results for the haploid case differ significantly
from Ohta’s results. For a mutant gene that is neu-
tral on the average (u;, = 0), Ohta (1972) concluded
that the expected time to fixation is equal to p the
initial frequency of the mutant. We have shown that
this is not so and that the ultimate probability of
fixation will be larger or smaller than  depending
on whether both genes have variable fitness or only
the mutant is variable in fitness. The discrepancy in
results seems to hinge on the level of approximation
of M(x,), the mean rate of change in gene frequency
per generation. Ohta approximated M (x,) by a linear
function of fitness. In reality the mean change of
gene frequency per generation is a non-linear function
of fitness. This is so whether the model is discrete or
continuous. To show that, we consider first the
haploid model of this section.

Under a discrete generation model the rate of
change of gene frequency per generation is

_ (1 —x) (0 — wy)
Ma) = nw + {1 —x)w,
expression (4.1) also holds for a continuous model.

In the later case the rate of change in gene frequency
is

(4.1)

dx,

P! (1 — x,) log% (4.2)

where w; and w, are assumed to be constant in an
interval of length ¢; and fluctuate at random from
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one period of length # to another. If x, is the frequency

at the beginning of the time interval (0, ¢}, then x,,

the frequency at the end of that interval is

= [ dx/di — X (wy/wy) . .

= f gl X (@ w)t + (1 — ) (43)

If £ is taken to be one generation (¢ = 1), then the

rate of change of gene frequency per generation re-
duces to that of (4.1).

When fitness is Malthusian (as in (4.2)), 4.1 can be

approximated by a Taylor series expansion to give

1
M%) =poy (1 — %) + 5 0ux (1 — %) (1 —2%)
(4.4)
where
o = B 1o, 2]
og, 0,
and

w
w=V [loge ;:] .
Ohta took M(x,) to be the first term in (4.4). This is
seen to be inadequate because it does not reflect

the non-linear property of the mean change of gene
frequency per generation.
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